If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2+p-84=0
a = 5; b = 1; c = -84;
Δ = b2-4ac
Δ = 12-4·5·(-84)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-41}{2*5}=\frac{-42}{10} =-4+1/5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+41}{2*5}=\frac{40}{10} =4 $
| 5×+y2=120 | | 87=7w+10 | | -5x+20=(-10) | | 6x+150/x=-4 | | -6t+7=(-5) | | -2x+6=(-8) | | (3x+5)(3x+7)=6x+10 | | n-20+n-20+90=180 | | i^2+6i=16 | | 10-4(4x-5)=-6 | | 10*12=x | | -1=4m+5 | | (1/3x^2)+3x-4=-4 | | 1/2x+2/3=2/9x-5/6 | | -6(8f-6)-18f=6(-11f+6) | | 2(-x+4)+5x-3=2 | | n+3+60+4n-8=180 | | −7(y+9)=9(y–5)−14y | | 6t-10=(-22) | | 12=-3c+-6 | | 3x+5+x=120 | | -14b-18=-2(14b+9)+14b | | 3x+3=x–5= | | 12=-3(c-2) | | 15/x=2.25 | | 14r-4(6r+1)=-14r | | 4(3n-10)=10(n-3) | | 7w-8w-5=12 | | n+30+2n-10+70=180 | | 3x+3=x–5 | | -15p=-8-11p | | 4d-3d+14=-1 |